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Background

Existing data-valuation methods rely on a suite of specially tailored
methods, many requiring expensive training to be conducted ']
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We propose leveraging existing NTK theory to side-step training

Neural Tangent Kernels (NTKs)

A similarity measure of a neural net’s parameter sensitivity!?!
O(x',z";0) = (Vo f(x';0),Vof(z";0))

Computable numerically for real, finite-sized networks, or analytically
for networks with infinitely many neurons in its hidden layers(3]

DataSet | 2-L. 10-L CNN-1 CNN-2 CNN-3 DataSet | 2-L 10-L CNN-1 CNN-2 CNN-3
D-MNIST | 25 56 50 89 6,067 D-MNIST | 715 5,377 820 49,714 19,247
E-MNIST | 25 55 60 90 5,931 F-MNIST | 715 5,377 820 49,714 20,036
CIFARIO | 25 46 90 153 5,390 CIFARIO | 715 4563 718 53,567 16,746
CIFARI100 | 25 46 86 152 5,407 CIFARI100 | 731 4,617 764 54,740 17,169
Table 1: Time in seconds to compute the Gram-Matrix of Table 2: Time in seconds to compute 100 epochs for finite-
common benchmark image datasets using the infinite-width width architectures with hidden layers of 10,000 neurons.

NTK (©°°) across four architectures with infinite-widths.

Surprisingly, computing the infinite-width NTK is significantly faster
than training a large, real neural net of the exact same architecture

Proposed Solution

Infinite-Width NTKs allows for an elegant, unified way of improving
model training across 4 tasks before any training is conducted
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The Gram Matrix formed by the Infinite-Width NTK describes the
similarities between all pairs of points present in the training set

CO®(x,x1) OF(z1,22) ... OF(r1,TN)T
O®(xy, 1) OX(z9,29) ... O>(T2,2N)
H>® =
O (xn, 1) OF(xN,T2) ... OX(zN,TN).
The clustering of classes by KPCA Data Set 2L CNN-2
. . . Digit MNIST | 2.728 (25.274)  3.785 (33.755)
using this Gram can inform us what Fashion MNIST | 3.488 (23.475) 5.022 (31.799)
architectures can naturally learn CIFARI0 1.179(2.234)  1.186 (2.097)
i tasks better th " CIFAR100 1.893 (13.058) 2.550 (19.421)
certain tasks better than others
Shapes 1.022 (1.400)  1.057 (1.921)
Corners 1.051 (1.259)  1.015(1.132)

Table 3: Ratio of mean (standard deviation) between inter-
class distances and intra-class distances when projecting
datasets into the last 4 principal components of @°°-KPCA
using different infinite-wide architectures. Larger values
correspond to classes being strongly clustered by KPCA.

Inherent Bias Detection

We can leverage Z to find what classes will be highly entangled during training

Z=Y" (H®) 'Y

When there is no class entanglement Z=Z"

Dataset Ranking RBO Score
C; 0 0 T Digit Intra-Class 0.962
0 (% 0 MNIST Inter-Class 0.904
7 — Fashion Intra-Class 0.963
. ; . MNIST Inter-Class 0.915
Intra-Class 0.734
L0 0 Ck CIFAR-10 1 1 ek Class 0.916
Intra-Class 0.557
The columns and diagonal encode CIFAR-100 | 1 er-Class 0,688

inter-class and intra-class relationships

Class 1 Inter-Class

Relationships

Table 7: The predicted rankings computed without train-
ing using the magnitudes of off-diagonal elements of the
infinite-width Gram-Label product, and the rankings pro-
duced after training a large but finite-width deep CNN
trained for 250 epochs. Our proposed technique strongly
predicts the ranking.

Our training-free rankings strongly predict the

Intra-Class real class entanglement presentin training
Relationships

Takeaways

Infinite-width NTKs provide a rich sighal that expands the predictability
of model training behavior for a given neural net architecture

Infinite-width NTKs are applicable as a low-cost yet powerful sighal
that can single-handedly realize various data valuation tasks
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Pseudo-Label Verification

The matrix Z de

scribes how orthogonal each class’s learning dynamics

are to each other within the context of their ground-truth labels

Z=Y" ' (H®)'Y

Dataset | Label Scheme L(Z) Trained Rank
70% Noise 29662.4 5v
. 30% Noise 20401.4 4v
. o . IE)AII%IItST 10% Noise ~ 11784.6 3V
We propose a novel metric Infinite-Width Clean 67027 2/
Block Diagonalization Error using Z can 70% Noise 308890 5V
identify whi faion | 02N RS 4
accurately identify which datasets may MNIST | oo Noi 32483 3
1 1 1 Nt 1 Class 1.8 1 v
contain noisy or incorrect training labels O - o
30% Noise 1269.4 4v
CIFAR-10 10% Noise 1159.7 3V
K Clean 1109.8 2V
£(Z) ]- Z Zkk 1 Class 0.2 1 v
— 70% Nois 19907.0 5v
K (YT1), [(YT1), — 1] 30% Noise 19166 4y
k=1 CIFAR-100 | 10% Noise 187328 3¢
Clean 18456.4 2V

1 Class 0.2 1 v
Table 6: The infinite-width block-diagonalization error
L(Z) computed without training, and the ranking of low-
est training loss after a large but finite-width deep CNN
trained for 250 epochs (Trained Rank) using different label-

ing schemes. £(Z) perfectly predicts the real ranking.

Label Refurbishment

By performing discrete alterations on labels to minimize Infinite-Width Block
Diagonalization Error, incorrect labels can be identified and refurbished

. - - — Dataset | Noise Added ~ Ours BARE
Algorithm 1: Label Refurbishment Using (H>) 0% 75 21%  79.61%
Require: Total iterations L; initial one-hot label matrix Y; Digit 30% 85.66%  95.73%

nitial .. F 1S h FY- MNIST 20% 85.00% 93.65%
vector initial positions of 1’s in each row of Y: a 10% 83 50%  87.50%
I: for L Iterations do 70% 13.36% -
2:  Compute —Vvy £L(Y) according to Eq. 12 Fashion 30% 65.67%
MNIST 20% 64.25%
33 b+ —VvL(Y)ia, 10% 57.00%
e N 70% 11.50%
o 30% 16.16%
CIFAR-10
4: ¢4 max —VvyL(Y)i, 20% 13.00%
d<c—b

I = argmaxd

8: YI:: — ey
9: end for
10: return Y

Table 8: After infecting datasets with different amounts of
random label noise, the percentage of noise correctly refur-

J = argmax —Vy L(Y); . bished (top) according to our method (Algorithm 1), com-

pared to BARE, a noisy label learning algorithm, after 200
epochs of model learning. Entries with “-” indicate that af-
ter 400 epochs, BARE’s model performance still did not
achieve better training than naively training with label noise.

This simple, training-free approach yields competitive results
to existing label refurbishment methods 4l that require training
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