
The Surprising Effectiveness of Infinite-Width NTKs for Characterizing and Improving Model Training

Association for the LEHR UND KUNST NO STATE OF STA **Advancement of Artificial Intelligence**

Joshua DeOliveira, Walter Gerych, Elke Rundensteiner

Background

Existing data-valuation methods rely on a suite of specially tailored methods, many requiring expensive training to be conducted [1]

We propose leveraging existing **NTK** theory to **side-step training**

Neural Tangent Kernels (NTKs)

A **similarity measure** of a neural net's parameter sensitivity^[2]

$$\Theta(x', x''; \theta) = \langle \nabla_{\theta} f(x'; \theta), \nabla_{\theta} f(x''; \theta) \rangle$$

Computable numerically for real, finite-sized networks, or analytically for networks with **infinitely many neurons in its hidden layers**^[3]

Data Set	2-L	10-L	CNN-1	CNN-2	CNN-3
D-MNIST	25	56	50	89	6,067
F-MNIST	25	55	60	90	5,931
CIFAR10	25	46	90	153	5,390
CIFAR 100	25	46	86	152	5.407

Table 1: Time in seconds to compute the Gram-Matrix of common benchmark image datasets using the infinite-width NTK (Θ^{∞}) across four architectures with infinite-widths.

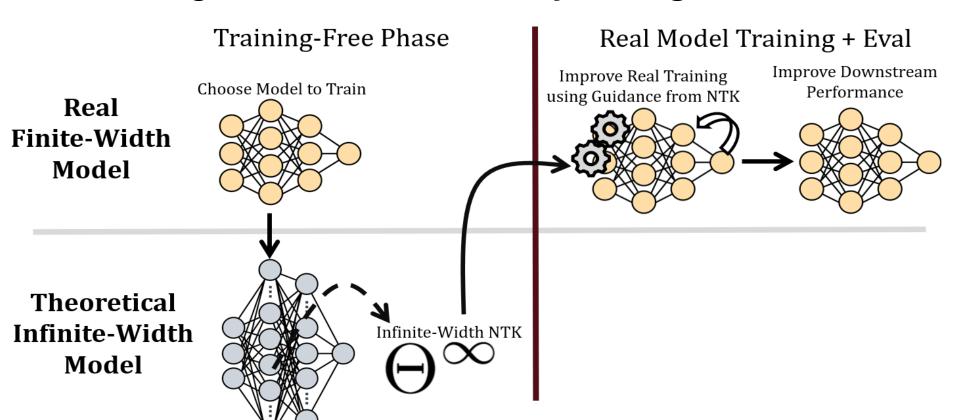
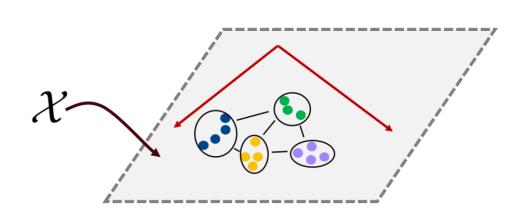

Data Set	2-L	10-L	CNN-1	CNN-2	CNN-3
D-MNIST	715	5,377	820	49,714	19,247
F-MNIST	715	5,377	820	49,714	20,036
CIFAR10	715	4,563	718	53,567	16,746
CIFAR100	731	4,617	764	54,740	17,169

Table 2: Time in seconds to compute 100 epochs for finite-width architectures with hidden layers of 10,000 neurons.

Surprisingly, computing the infinite-width NTK is significantly **faster** than training a large, real neural net of the exact same architecture

Proposed Solution

Infinite-Width NTKs allows for an elegant, unified way of improving model training across 4 tasks before any training is conducted



Architecture Selection

The **Gram Matrix** formed by the Infinite-Width NTK describes the similarities between all pairs of points present in the training set

$$\mathbf{H}^{\infty} = \begin{bmatrix} \Theta^{\infty}(x_1, x_1) & \Theta^{\infty}(x_1, x_2) & \dots & \Theta^{\infty}(x_1, x_N) \\ \Theta^{\infty}(x_2, x_1) & \Theta^{\infty}(x_2, x_2) & \dots & \Theta^{\infty}(x_2, x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \Theta^{\infty}(x_N, x_1) & \Theta^{\infty}(x_N, x_2) & \dots & \Theta^{\infty}(x_N, x_N) \end{bmatrix}$$

The clustering of classes by **KPCA** using this Gram can inform us what architectures can naturally learn certain tasks better than others

Data Set	2-L	CNN-2
Digit MNIST	2.728 (25.274)	3.785 (33.755)
Fashion MNIST	3.488 (23.475)	5.022 (31.799)
CIFAR10	1.179 (2.234)	1.186 (2.097)
CIFAR100	1.893 (13.058)	2.550 (19.421)
Shapes	1.022 (1.400)	1.057 (1.921)
Corners	1.051 (1.259)	1.015 (1.132)

Table 3: Ratio of mean (standard deviation) between interclass distances and intra-class distances when projecting datasets into the last 4 principal components of Θ^{∞} -KPCA using different infinite-wide architectures. Larger values correspond to classes being strongly clustered by KPCA.

Pseudo-Label Verification

The matrix **Z** describes how **orthogonal each class's learning dynamics** are to each other within the context of their ground-truth labels

$$\mathbf{Z} = \mathbf{Y}^{\top} \left(\mathbf{H}^{\infty} \right)^{-1} \mathbf{Y}$$

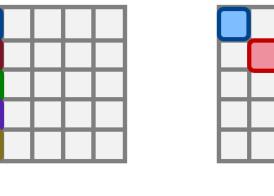
We propose a novel metric *Infinite-Width* Block Diagonalization Error using **Z** can accurately identify which datasets may contain noisy or incorrect training labels

$$\mathcal{L}(\mathbf{Z}) = \frac{1}{K} \sum_{k=1}^{K} \frac{\mathbf{Z}_{kk}}{(\mathbf{Y}^{\top} \mathbf{1})_k [(\mathbf{Y}^{\top} \mathbf{1})_k - 1]}$$
$$- \frac{\beta}{K^2 - K} \sum_{k=1}^{K} \sum_{k \neq d} \left[\frac{\mathbf{Z}_{k,d}}{(\mathbf{Y}^{\top} \mathbf{1})_k (\mathbf{Y}^{\top} \mathbf{1})_d} \right]$$

abel Scheme 0% Noise 0% Noise 0% Noise Clean Class	29662.4 20401.4 11784.6 6702.7 1.3	Trained Rank 5 √ 4 √ 3 √ 2 √ 1 √
0% Noise 0% Noise Clean Class	20401.4 11784.6 6702.7	4 √ 3 √ 2 √
0% Noise Clean Class	11784.6 6702.7	3 √ 2 √
Clean Class	6702.7	2 🗸
Class		
	1.3	1 /
0% Noice		1 🗸
U/U INDISC	30889.0	5 √
0% Noise	21433.0	4 ✓
0% Noise	13248.3	3 ✓
lean	8558.3	2 ✓
Class	1.8	1 ✓
0% Noise	1387.0	5 √
0% Noise	1269.4	4 ✓
0% Noise	1159.7	3 ✓
Clean	1109.8	2 ✓
Class	0.2	1 ✓
0% Noise	19907.0	5 √
0% Noise	19166.1	4 ✓
0% Noise	18732.8	3 ✓
lean	18456.4	2 ✓
Class	0.2	1 ✓
	0% Noise Clean Class 0% Noise 0% Noise 0% Noise Clean Class 0% Noise 0% Noise 0% Noise 0% Noise 0% Noise	0% Noise 21433.0 0% Noise 13248.3 Clean 8558.3 Class 1.8 0% Noise 1387.0 0% Noise 1269.4 0% Noise 1159.7 Clean 1109.8 Class 0.2 0% Noise 19907.0 0% Noise 19166.1 0% Noise 18732.8 Clean 18456.4

trained for 250 epochs (Trained Rank) using different labeling schemes. $\mathcal{L}(\mathbf{Z})$ perfectly predicts the real ranking.

Inherent Bias Detection


We can leverage **Z** to find what classes will be **highly entangled** during training

$$\mathbf{Z} = \mathbf{Y}^{\top} (\mathbf{H}^{\infty})^{-1} \mathbf{Y}$$

When there is no class entanglement $Z=Z^*$

$$\mathbf{Z}^* = \begin{bmatrix} C_1 & 0 & \dots & 0 \\ 0 & C_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & C_K \end{bmatrix}$$

The **columns** and **diagonal** encode inter-class and intra-class relationships

Intra-Class Relationships

Dataset	Ranking	RBO Score
Digit	Intra-Class	0.962
MNIST	Inter-Class	0.904
Fashion	Intra-Class	0.963
MNIST	Inter-Class	0.915
CIFAR-10	Intra-Class	0.734
CITAK-10	Inter-Class	0.916
CIFAR-100	Intra-Class	0.557
CITAK-100	Inter-Class	0.688

Table 7: The predicted rankings computed without training using the magnitudes of off-diagonal elements of the infinite-width Gram-Label product, and the rankings produced after training a large but finite-width deep CNN trained for 250 epochs. Our proposed technique strongly predicts the ranking.

Our training-free rankings strongly predict the real class entanglement present in training

Label Refurbishment

By performing discrete alterations on labels to minimize *Infinite-Width Block* Diagonalization Error, incorrect labels can be identified and refurbished

Algorithm 1: Label Refurbishment Using $(\mathbf{H}^{\infty})^{-1}$ **Require:** Total iterations L; initial one-hot label matrix Y; vector initial positions of 1's in each row of Y: a 1: **for** L Iterations **do** Compute $-\nabla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})$ according to Eq. 12 $\mathbf{b} \leftarrow -
abla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})_{i, \mathbf{a}_i}$

	$J \subset \{1, \dots, M\}$	$i \in \{1,,N\}$
5:	$\mathbf{d} \leftarrow \mathbf{c} - \mathbf{b}$	
6:	$I = \arg \max \mathbf{d}$	
7:	$J = \arg \max -\nabla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})_{I,:}$	
8:	$\mathbf{Y}_{I,:} \leftarrow \mathbf{e}_J$	
9:	end for	
10: 1	return Y	

	Dataset	Noise Added	Ours	BARE
	Digit	70%	25.21%	79.61%
		30%	85.66%	95.73%
	MNIST	20%	85.00%	93.65%
		10%	83.50%	87.50%
		70%	13.36%	-
	Fashion MNIST	30%	65.67%	-
		20%	64.25%	-
		10%	57.00%	-
	CIFAR-10	70%	11.50%	-
		30%	16.16%	-
		20%	13.00%	-
		10%	9.00%	-

Table 8: After infecting datasets with different amounts of random label noise, the percentage of noise correctly refurbished (top) according to our method (Algorithm 1), compared to BARE, a noisy label learning algorithm, after 200 epochs of model learning. Entries with "-" indicate that after 400 epochs, BARE's model performance still did not achieve better training than naively training with label noise.

This simple, training-free approach yields competitive results to existing label refurbishment methods [4] that require training

Takeaways

Class 1 Inter-Class

Relationships

Infinite-width NTKs provide a rich signal that expands the predictability of model training behavior for a given neural net architecture

Infinite-width NTKs are applicable as a low-cost yet powerful signal that can single-handedly realize various data valuation tasks

[1] Nam, J.; Cha, H.; Ahn, S.; Lee, J.; and Shin, J. 2020. Learn-ing from failure: De-biasing classifier from biased classifier. Advances in Neural Information Processing Systems, 33: 20673–20684

[2] Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural networks. Advances in neural information processing systems, 31. [3] Novak, R.; Xiao, L.; Hron, J.; Lee, J.; Alemi, A. A.; Sohl-Dickstein, J.; and Schoenholz, S. S. 2020. Neural Tangents: Fast and Easy Infinite Neural Networks in Python. In Inter-national Conference on

[4] Patel, D.; and Sastry, P. 2023. Adaptive sample selection for robust learning under label noise. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3932–3942.

Acknowledgements

Learning Representations.

DAISY Research Lab & NSF Grant DMS-1337943